

COEFFICIENTI DI DILATAZIONE LINEARE DEI MATERIALI TERMOPLASTICI

Il coefficiente di dilatazione lineare di un tubo in materiale plastico \grave{e} indicato con \mathbf{K} ed esprime numericamente l'allungamento subito da un campione di lunghezza unitaria per ogni ${}^{o}\text{C}$ di incremento della temperatura.

La formula sottostante permette di calcolare l'allungamento (ΔL) moltiplicando la lunghezza iniziale (L_0) per il coefficiente di dilatazione lineare (K) per la differenza di temperatura (ΔT).

$\Delta L = L_0 \times K \times \Delta T$

Coefficienti di dilatazione lineare per i tubi da noi trattati

PVC-U	K = 0,00007	7 x 10 ⁻⁵
PE-HD	K = 0,00020	20 x 10 ⁻⁵
PP-H	K = 0,00016	16 x 10 ⁻⁵
PVC-C	K = 0,000065	6,5 x 10 ⁻⁵
PVDF	K = 0,00012	12 x 10 ⁻⁵
PTFE	K = 0,00013	13 x 10 ⁻⁵

Esempio

Dilatazione lineare per 1 mt. di tubo in **PE-HD** con temperatura iniziale di 20 °C, temperatura finale a 30 °C o temperatura finale a 60 °C:

$$L_o = 1 \text{ mt}$$
, $T_o = 20 \, ^{\circ}\text{C}$ e otterremo: